张二利, 何兰兰, 李丹阳, 沈立, 吴钟华, 张军, 叶永强. 基于脑小血管病影像学总负荷的急性脑梗死患者住院时间延长列线图模型构建与验证. 2025. biomedRxiv.202501.00008
基于脑小血管病影像学总负荷的急性脑梗死患者住院时间延长列线图模型构建与验证
通讯作者: 叶永强, n_taihu@163.com
DOI:10.12201/bmr.202501.00008
Construction and validation of nomogram model for prolonged length of stay in patients with acute cerebral infarction based on total cerebral small vessel disease burden scores
Corresponding author: YE Yongqiang, n_taihu@163.com
-
摘要:目的 基于脑小血管病(cerebral small vessel disease,CSVD)影像学总负荷构建急性脑梗死(acute cerebral infarction,ACI)患者住院时间延长列线图模型,并对其进行验证。方法 选取2021年1月至2023年12月湖州学院附属南太湖医院神经内科收治的462例ACI患者作为研究对象,根据患者住院时间将其分为住院时间延长组(≥14d,104例)和住院时间正常组(<14d,358例)。按照7:3原则,将患者分为训练组323例和验证组139例,收集患者临床资料,基于训练组数据,采用Lasso-logistic回归分析ACI患者住院时间延长危险因素,构建列线图模型,基于验证组数据对模型进行验证,运用受试者工作特征曲线(receiver operating characteristic curves,ROC曲线)、校准曲线、决策曲线评价模型预测效能。结果 基于训练组数据,Lasso回归筛选出4个非零系数指标,分别为基线美国国立卫生研究院卒中量表(National Institutes of Health stroke scale,NIHSS)评分、年龄校正查尔森合并症指数(age-adjustedSCharlsonScomorbidity index,aCCI)评分、中性粒细胞与淋巴细胞比值(neutrophil-to-lymphocyte ratio,NLR)、CSVD总负荷评分。多因素Logistic回归分析显示,基线NIHSS评分、aCCI评分、NLR、CSVD总负荷评分均是ACI患者住院时间延长的独立危险因素(P<0.05)。基于上述4项指标构建列线图模型,结果显示,该模型预测训练组、验证组患者住院时间延长的ROC曲线下面积为0.812(95%CI: 0.756~0.868)、0.820(95%CI: 0.730~0.909);校准曲线显示,该模型在两组间预测概率与实际概率一致性较好(χ2值分别为9.129、3.728,P值分别为0.332、0.881);决策曲线表明,该模型在两组间均具有较广的临床净收益。结论 基于CSVD总负荷评分构建的ACI患者住院时间延长列线图模型具有较好的预测效能,可作为筛查ACI患者住院时间延长评估工具。
Abstract: Objective Construct a nomogram model for prolonged length of stay in patients with acute cerebral infarction based on total cerebral small vessel disease burden scores, and validate its effectiveness. Methods A total of 462 ACI patients admitted to the department of neurology of South Taihu Hospital Affiliated To Huzhou College from January 2021 to December 2023 were selected as the study subjects. According to the length of stay, they were divided into the prolonged length of stay group (≥14 d, 104cases) and the normal length of stay group (<14 d, 358 cases). According to the ratio of 7:3, patients were divided into training group of 323 cases and validation group of 139 cases. Clinical data of patients were collected. Based on the training group data, Lasso logistic regression was used to analyze the risk factors for prolonged length of stay in ACI patients, construct a nomogram model and validate the model using validation data. In addition, Receiver operating characteristic curves (ROC curves), calibration curves and decision curves were used to evaluate the predictive performance of the model.
Key words: Acute cerebral infarction; Cerebral small vessel disease; Total burden score; Prolonged length of stay; Nomogram提交时间:2025-01-03
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
李鑫泰, 童理, 杨剑文. 类“脑梗死”影像的造影剂脑病1例及文献复习. 2024. doi: 10.12201/bmr.202406.00035
章涛. VCIND与认知正常脑血管病患者脑血管形态学及血清学相关指标差异分析. 2025. doi: 10.12201/bmr.202501.00031
胡欣. 剖宫产术中寒战风险预测模型及列线图的构建. 2025. doi: 10.12201/bmr.202501.00053
占剑虎, 邱伟文, 蓝海源, 王华强. 脑白质高信号严重程度与络病学证型分布研究. 2024. doi: 10.12201/bmr.202411.00015
段馨悦, 王忠. 血清sTREM2与老年急性冠脉综合征的相关性研究. 2024. doi: 10.12201/bmr.202412.00086
谢芬、余娇通讯作者、宋思蓓、黄琳. 高甘油三酯血症性急性胰腺炎患者短期内复发再入院的风险预警模型构建与验证. 2024. doi: 10.12201/bmr.202408.00010
连万民. 基于数据治理的脑血管专病数据库建设实践. 2022. doi: 10.12201/bmr.202210.00011
周磊. 基于PDCA构建专病模板为导向的CAP患者 病情严重程度评估体系. 2024. doi: 10.12201/bmr.202409.00064
廖佳伟, 刘勇. 神经炎性反应与患者术后谵妄发生关系的研究进展. 2024. doi: 10.12201/bmr.202407.00037
王耀国, 唐诗诗, 刘泓泽, 安雨婷, 周毅. 基于本地大模型的骨质疏松专病数据库构建流程优化研究. 2024. doi: 10.12201/bmr.202410.00002
-
序号 提交日期 编号 操作 1 2024-12-22 bmr.202501.00008V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:74
- 下载量: 0
- 评论数:0