董怡, 冉晔, 余中光. 我国医疗人工智能风险研究现状及风险识别. 2024. biomedRxiv.202411.00081
我国医疗人工智能风险研究现状及风险识别
通讯作者: 余中光, yzg081892@163.com
DOI:10.12201/bmr.202411.00081
Research on the current status of medical artificial intelligence application risk research and its identification in China.Dong yi1,Ran ye1,Yu zhong guang2,3.
Corresponding author: Yu zhong guang, yzg081892@163.com
-
摘要:目的:梳理我国医疗人工智能风险研究现状,进行风险识别,针对性地提出风险应对策略。方法:通过文献计量学方法检索CNKI学术期刊数据库中2015—2024年相关研究成果,对发文量、关键词共现关系进行可视化分析,识别出我国医疗人工智能的研究热点主要聚焦于技术与数据安全风险、伦理与法律风险和风险治理研究,基于TOE理论和文本分析法,从环境、组织、技术、个体四个层面首次总结并提出了医疗人工智能风险识别理论框架,共识别出24项具体风险。结论:从理论和实践角度归纳出本研究的贡献,后续我们应从前期社会规制、医疗机构视角、技术应用和个体义务范围等方面提出具体的风险应对策略入手,保障医疗人工智能应用安全、可持续发展。
Abstract: Objective: To sort out the current status of medical artificial intelligence risk research in China, conduct risk identification, and propose risk response strategies in a targeted manner. Methods: Through the bibliometric method to search the CNKI academic journal database for relevant research results from 2015 to 2024, and the visualization analysis of the number of publications and keyword co-occurrence relationship, we identified that the research hotspots of medical artificial intelligence in China mainly focus on the technical and data security risks, ethical and legal risks, and risk governance research, and we summarized and proposed a theoretical framework for the identification of medical artificial intelligence risks from environment, organization, technology, and individual levels for the first time, based on the TOE theory and the text Based on the TOE theory and text analysis method, the theoretical framework of medical artificial intelligence risk identification is summarized and proposed for the first time from the four levels of environment,organization, technology, and individual, and a total of 24 specific risks are identified. Conclusion: Subsequently, we should propose specific risk response strategies in terms of pre-social regulation, medical organisation perspectives, and technological applications to guarantee the safe and sustainable development of medical artificial intelligence applications.The contributions of this study are summarized from both theoretical and practical perspectives, starting from the pre-social regulation, healthcare organization perspective, technological applications, and the scope of individual obligations, in order to guarantee the safe and sustainable development of medical artificial intelligence applications.
Key words: Medical artificial intelligence; current state of risk research; TOE theory; risk identification提交时间:2024-11-29
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
谢俊祥, 张琳. 国内外医疗人工智能战略及细分领域现状分析. 2020. doi: 10.12201/bmr.202005.00243
史森中. 生成式人工智能(GAI)基层医疗应用风险及治理策略分析. 2024. doi: 10.12201/bmr.202408.00053
郑琰莉, 韩福海, 李舒玉, 苏文星. 人工智能大模型在医疗领域的应用现状与前景展望. 2023. doi: 10.12201/bmr.202312.00027
董婷婷. 医疗人工智能产品对患者安全的影响及对策研究. 2020. doi: 10.12201/bmr.202012.00004
马傲, 葛小玲. 人工智能大模型在医疗健康领域应用的研究. 2024. doi: 10.12201/bmr.202408.00039
吴思静, 许彬彬, 黄凤. 浙江省医学人工智能发展现状与政策建议. 2021. doi: 10.12201/bmr.202101.00015
李萍, 孙丽萍, 任和, 李华萍, 邵泽国. 医疗器械专业人工智能思维培养课程体系的构建. 2020. doi: 10.12201/bmr.202007.00013
司唯, 徐婷, 林家玥, 曹文婷, 朱爱勇. 人工智能技术在老年认知症筛查中的应用现状. 2024. doi: 10.12201/bmr.202407.00048
董琨, 杨芬, 杨扬. 人工智能在全科医师培训中的应用与思考. 2023. doi: 10.12201/bmr.202305.00011
李明. 医生对医疗人工智能使用意愿性以及影响因素分析. 2023. doi: 10.12201/bmr.202312.00020
-
序号 提交日期 编号 操作 1 2024-10-21 bmr.202411.00081V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
访问统计
- 阅读量:95
- 下载量:1
- 评论数:0