林金银, 陆长锋. 人工智能在医学高校图书馆应用的主要利益相关者分析. 2023. biomedRxiv.202303.00001
人工智能在医学高校图书馆应用的主要利益相关者分析
通讯作者: 陆长锋, 13810404509@139.com
DOI:10.12201/bmr.202303.00001
Main Stakeholder analysis of the application of artificial intelligence in the field of Medical University Library
Corresponding author: Lu Changfeng, 13810404509@139.com
-
摘要:目的/意义文章以AI在医学高校图书馆的应用为出发点,研究其应用场景与典型案例,进而分析主要利益相关者及其利益诉求与面临问题,为推广AI在医学高校图书馆的应用提供对策建议。方法/过程采用文献调研与电话咨询,确定AI在医学高校图书馆的应用场景与典型案例,利用米切尔评分法和克拉克森分类法确定主要利益相关者,并分析利益诉求与面临问题。结果/结论 AI在医学高校图书馆的应用场景主要包括环境、资源和服务三大维度,主要利益相关者包括政府、医学高校、医学高校图书馆、图书馆员、读者和AI厂商,针对制度缺失、AI产品不佳及同质化严重、图书馆员知识缺失、读者AI知识素养不足等问题,提出完善AI在医学高校图书馆应用的制度保障,从基础层、技术层和应用层强化医学高校图书馆AI产品,搭建AI产品测试平台与强化AI产品上市后监测,加强医学高校图书馆AI人才建设与提升读者AI知识素养等四方面对策建议。
Abstract: Purpose/Significance This paper taked the application of AI in medical university libraries as the starting point, studied its application scenarios and typical cases, and then analyzed the main stakeholders and their interest demands and problems, and provided suggestions for promoting the application of AI in medical university libraries. Method/Process Literature research and telephone consultation were used to determine the application scenarios and typical cases of AI in medical university libraries, and the Mitchell scoring method and Clarkson classification were used to identify major stakeholders, and the interests and problems faced were analyzed. Results/Conclusions The application scenarios of AI in medical university libraries mainly include three dimensions: environment, resources and services. And the main stakeholders include governments, medical universities, medical university libraries, librarians, readers and AI vendors. Four countermeasures are suggested, improving the institutional guarantee for the application of AI in medical university libraries, strengthening the AI products of medical university libraries from the basic, technical and application levels, building the AI product testing platform and strengthen the post marketing monitoring of AI products, strengthening the construction of AI talents in medical university libraries and improve the AI knowledge literacy of readers.
Key words: Medical university library; Artificial intelligence; Stakeholders; Mitchell scoring; Clarkson classification提交时间:2023-03-03
版权声明:作者本人独立拥有该论文的版权,预印本系统仅拥有论文的永久保存权利。任何人未经允许不得重复使用。 -
图表
-
朱宇凡, 赵欣, 杨志强, 钟厚成, 蔡林, 谢远龙. “人工智能+医学”复合型人才培养展望. 2020. doi: 10.12201/bmr.202008.00010
谢俊祥, 张琳. 国内外医疗人工智能战略及细分领域现状分析. 2020. doi: 10.12201/bmr.202005.00243
董琨, 杨芬, 杨扬. 人工智能在全科医师培训中的应用与思考. 2023. doi: 10.12201/bmr.202305.00011
吴思静, 许彬彬, 黄凤. 浙江省医学人工智能发展现状与政策建议. 2021. doi: 10.12201/bmr.202101.00015
董婷婷. 医疗人工智能产品对患者安全的影响及对策研究. 2020. doi: 10.12201/bmr.202012.00004
郑琰莉, 韩福海, 李舒玉, 苏文星. 人工智能大模型在医疗领域的应用现状与前景展望. 2023. doi: 10.12201/bmr.202312.00027
颜文城, 李俊震, 陈玫, 卢艳红. 人工智能助力口腔医学:在牙体牙髓病学领域的应用. 2021. doi: 10.12201/bmr.202102.00003
李明. 医生对医疗人工智能使用意愿性以及影响因素分析. 2023. doi: 10.12201/bmr.202312.00020
李明. 医生对医疗人工智能使用意愿性以及影响因素分析. 2023. doi: 10.12201/bmr.202307.00001
田瑞. 高校医学图书馆参与健康类虚假信息治理的对策研究. 2023. doi: 10.12201/bmr.202303.00005
-
序号 提交日期 编号 操作 1 2022-11-05 bmr.202303.00001V1
下载 -
-
公开评论 匿名评论 仅发给作者
引用格式
推荐引用格式
访问统计
- 阅读量:588
- 下载量:1
- 评论数:0